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ABSTRACT
Certain important tra.nséendental equations occur in the case of elastic angu-
lar regions while analyzing these regions for flexure, vibration, and buckling.
Previously these transcendental equations have been solved for roots and the
data has been tabulated for different boundary conditions, as the angle of the
region is varied. The purpose of this paper is to demonétrate that once we
solve foi: the roots at a specific angular region, the roots for angular regions
with angles ranging from 0 to 27 can be obtained via forward integration.
Key Words: Transcendental equation, elastic angular region, flexure, vibra-

tion, buckling , polygonal plate
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2 Roots of Transcendental Equations

1. INTRODUCTION
Certain transcendental equations occur in the case of solution of polygonal
plate problems dealing with flexure, vibration, and buckling [1-3]. The roots
of these equations need to be evaluated to form eigenfunctions which are
essential for the solution of the mode shape of the plate during flexure or
vibration. Also the eigenfunctions can be used to find the frequencies of
vibration of sectorial, triangular, quadrilateral, and other polygonal plates.

Several different methods have been used in the past to find the frequen-
cies of vibration of plates. An overview of the some of the studies on the free
vibration of plates is given in [4]. Ref. 5 derives an equation for finding the
eigenfrequencies of polygonal plates with free simply supported mixed edgés
and Ref. 6 analyzes the free vibration of right triangular plates using a su-
perposition method. In [7], the Ritz method is used to find the fundamental
frequencies of five-sided plates which are obtained by cutting out an isosceles
triangle from one corner. The dynamical analogy with membranes is used
in [8] to study the free vibration of regular polygonal plates with simply
supported edges. In [9] finite elements are used to analyze annular sectorial
plates having their inner circular edges clamped. All of these plates under
arbitrary boundary conditions can be analyzed with the method of the eigen-
functions given in [2]. Although we emphasize the classical problems related
to homogeneous isotropic thin plates under small deﬂection:s, there may be
suitable extensions of the methodology to the anisotropic, nonhomogeneous
and composite material cases listed in {10].

Ref. 11 tabulates the first ten complex roots of these transcendental
equations as the angle of the angular region is varied from 15° to 180° in steps
of 5°. Also if real roots are present, these are also tabulated in ascending

order. In this paper we show that once the roots are known at a specific
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angle, the roots at all the other angles ranging from 0 to 27 can be found
by solving a differential equation which relates the roots to the angle of the

region.

2. TRANSCENDENTAL EQUATIONS
In this section, we indicate how the transcendental equation for an angular
region arises while solving for basis functions for the clamped case. Once the
basis functions are formed, the solution for flexure or vibration of the angular
region can be expressed as a linear combination of the basis functions. Since
any polygonal plate can be subdivided into angular regions, the solution on
the polygonal plate can be obtained by requiring the solutions on the angular
regions to satisfy continuity conditions along suitable diagonals.

Let the vertex of the angular region be at (0,0) with one of its edges
coinciding with the z-axis. Let o be the angle of the angular region. The

equation of motion of the angular plate is given by {12}

2 _
p 0% ’
Vi + —— =0
v D 8t2

where D is the flexural rigidity, p is the uniform mass density per unit area,
# is the transverse displacement, and V* = V2V2, V2 being the Laplacian.

Requiring simple harmonic vibrations ¢ = w(r, 8)e ™, we get

2 18 1 02)\°
Viw=|—=S+-—+5== =
v (aﬂ * r8r+r2802) e

E

2
where p = -p% The edges of the angular region can be assigned any of the

classical homogeneous boundary conditions. As an example, the clamped

boundary conditions are
w(r,0) =0,

w(r,a) =0, —(r,a) =0.
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For the sake of clarity, we now indicate how basis functions and transcen-
dental equations can be formed for the angular region. These basis functions
are used in [1] for finding the deflection of quadrilateral plates and in [2] for
finding the frequency of vibration and mode shape of quadrilateral plates.

The method of solution for V4w = pw can be indicated as follows.
Let wo(r, 8) be such that V*wg = 0, and w1 (r, §) be such that Viw; = pwo.
Continuing in this fashion, we define w; 3 by V4w;+1 = pw;. Suppose w;, i =
1,2,... satisfy the given boundary conditions. Then clearly w = > ;2 w;
satisfies V4w = pw and the boundary conditions. We now indicate how this
procedure can be applied to problems associated with the angular region.

We have V4wy = 0. The functions wq are given in [1,11] for different
boundary conditions. Note that on any compact angular region, we can nor-

malize the radius vector such that |r| < 1 on the compact region. Choosing
wo(r, 8) = 11 (A cos(A+1)8+Bo sin(A+1)8+Cq cos(A\—1)6+Dg sin(A—1)6),

the clamped boundary conditions imply that the 4 x 4 determinant

1 0 1 0
det cos(A+1)a sin(A+1)a cos(A—1)a sin(A—1)a 05
0 A1 0 A-1 '

—(A+1)sin(A+1)a (A1) cos(A+1)a  —(A-1)sin(A-1)a (A-1)cos(A-1)a

The above equation is equivalent to the transcendental equation

2

sin® Aa — A\%sin®a = 0.

£

Solving the transcendental equation numerically for A, we get a complex
sequence {\;}72; which we arrange in the order of increasing positive real
part.

For each )\, we can determine Ag, Bg,Co and D¢ of wp(r,8) upto an
arbitrary multiplicative constant (e.g., let Ag = 1) based on the boundary

conditions.
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Let A = ); for some i. We need to get w; such that

Viwi = pwo = pr* ! (4o cos(A + 1)8 + Bosin(A + 1)8

+Cocos(A — 1)8 + Dgsin(A — 1)6).

5 Ag cos(A + 1)6 + Bosin(A + 1)6
[(A+5)2— (A +1D)2[(A+3)2 = (A +1)?
Cocos(A — 1)8 + Dgsin(A — 1)8
[(A+5)2— (A +1)2[(A+3)2 = (A +1)?]
+r**5[4; cos(A + 5)8 + By sin(\ + 5)8

+C1 cos(\ + 3)8 + Dy sin(X + 3)6],

where the homogeneous part r**3[A; cos(A+5)8+ By sin(A+5)8+C1 cos(A+
3)6+ D1 sin(A +3)8] enables satisfaction of the boundary conditions on § =0
and 4 = a.

Thus select A1, B1,C1, and D; to satisfy the four boundary conditions

w1y
(r,0) = —ae—(r,a) = 0.

dwq

wi(r,0) = wi(r,a) = ¥Th

2a =0, to get

Since ) satisfies the transcendental equation sin® Aa — A2 sin
a nonsingular system for the solution of A1, B1,C1, and Dj, we should have
sin?(\ + 4)o — (A + 4)%sin? @ # 0. This can be easily verified.

'

Continuing in this manner, we get for ¢ > 1,
w; = w; + 1 (A cos(A + 14 44)0 + B;sin(\ + 1 + 4i)8

+C;cos(A — 1+ 4i)8 + D;sin(A — 1+ 44)9),

where V4&; = pw;_1, and A;, B;, C;, and D; are selected such that w; sat-

isfies the boundary conditions along the edges.
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3. DIFFERENTIAL EQUATIONS
Let a be the angle of the angular region and v be the Poisson’s ratio. The

transcendental equations for various boundary conditions are given by the

following table [1,11].

TABLE 1: Transcendental Equations

Boundary Condition

Case =0 f=a Transcendental Equation
1 Clamped Clamped sin® A\ = A2sin®a
2 Free Free (3 +v)%sin® Aa = (1 — v)2A%sin’ @
3 Clamped Free (3+v)(1 - v)sin® Aa =4 — (1 —v)2\%sin’a
4 Clamped SS sin 2Aa = Asin 2a
5 SS Free (3 +v)sin2 a = —(1 — v)Asin2a
6 SS SS sin? \a = sin o

In the table above, SS means simply supported. In cases 1, 2 and 6,
the transcendental equations may be further broken down into those for
symmetrical and anti-symmetrical modes.

In cases 1,2, and 6, the transcendental equation can be written as
a?sin® Aa = (bA + ¢)%sin? o

for suitable constants a,b and c¢. The transcendental equation for the sym-
metrical mode is

asinAa + (bA + ¢)sina = 0.
Taking differentials on both sides, we get

[Nda + adA|acosAa + bdAsina + (bA + ¢) cosada = 0.




Sec. 3: Differential Equations 7

This results in

dXx _ —[adcosda + (b) +c)cosq]
da accosAa + bsina '

In the anti-symmetrical case, we get

d\ _ —[aXcosda — (bA +c) cosa]

do aq Cos Aa — bsina

In cases 4 and 5, the transcendental equation can be put in the form
asin 2\ a = b sin 2a

for suitable a and b. The differential equation can be derived as

d\  2(bXcos2a —a)cos2)a)

E 2aa cos 2 a — bsin 2«

For case 3, the transcendental equation is

asin® \a = 4 — bA? sin? a,

where
a=@+v)(1-v),
b=(1-v)2

The relevant differential equation is .

d\ _ —[bA%sin2a 4 aXsin2)a]
do  aasin2ia + 2bisin®a

£

The parameter x4 = Aa tends to vary more slowly than A as o is varied
from 0 to 27. Thus, from a computational point of view, it might be beneficial
to formulate the differential equations in terms of u. For the symmetrical

mode of cases 1,2, and 6, the differential equation is

dp _ —(bu + ca) cos o + %Sina

do aa cosp + bsina
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For the anti-symmetrical mode of cases 1,2, and 6, the differential equation

is
dp  (bu+ ca)cosa — -Izaﬁsina

da aacospu — bsina
.

The'.differéntial equation for cases 4 and 5 is

du _ b(2pcos2a — & sin20)
da  2accos2u —bsin2a

For case 3, the differential equation is

2
du _ b(g-) [~ o sin 20 4 2sin® o]

do qasin2u+2b(E)sin?a

It can be observed from the numerators of the right sides of the differen-
tial equations for u that as o tends to zero, the numerators in all cases tend

to zero also. Thus, for moderate a, the parameter y is relatively constant.

4. ADVANTAGES OF FORWARD INTEGRATION

One of the advantages of the proposed method is that if the roots are found at
an arbitrary angle, the roots at any other angle in the range of the initial and
final angles can also be tabulated with significantly reduced computing effort.
Only forward integration is needed to compute the corresponding roots at
the intermediate angle. However, as can be observed from the examples in
Section 5, the forward integration may not yield all the roots and in fact may
occasionally result in spurious roots. We observed that ahﬁost all of these
missing roots are real and it is not difficult to compute these using any of
the standard methods. Some extra effort is needed to compute the missing
complex roots and these can be computed using a search procedure. In spite
of these obstacles, there is a significant reduction in the computing effort by

the use of the forward integration technique since the usual search procedure
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for all the complex roots is more time consuming and involves an intelligent
choice for the initial approximation for the roots.

For moderate a, since the parameter y = A« is relatively independent of
a, the time taken for the initial approximation of the roots can be reduced.
However, when we consider the whole range of [0, 27|, the value of y varies
significantly. We present several examples in Section 5 illustrating the vari-
ation of g with a. Our method is especially useful in cases where there is
signiﬁcaﬁt variation in g with a.. It is easy to plot the various values of y
as o varies.

Almost all the complex roots and most of the real roots are obtained
by this procedure. However, some of the roots need to be found. It is a lot
simpler to find the real roots. One of the observations from Ref. 11 is that
at least for 0 < a < 7, the real roots are smaller than the least magnitude
of the real part of the complex roots for almost all types of boundary condi-
tions. The only exception to this is the clamped-free case. We will present
examples involving clamped, clamped-free and simply supported-free bound-
ary conditions in Section 5 to illustrate the usefulness of our approach. It
happens on occasion that the forward integration generates spurious roots.
Thus it is beneficial to check the validity of the roots obtained by the forward
integration procedure.

Another significant advantage with the approach of the differential equa-
tions is that the initial value problem can be integrated over the range of
a from e to 2x, where e approaches 0. The differential equations become
singular at o = 0. The roots as o approaches 27 are useful for the solution

of the crack problem.
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5. EXAMPLES

We solve three examples in this section to demonstrate the usefulness of
the approach in the case Qf the three different types of differential equations
considered in Section 3.

Ezample 1: Let us take the transcendental equation for the symmetrical
roots given by

sinla 4+ Asina =0

for an angular region with clamped boundary conditions. Npte that p = Aa.
For @ = 15°, the first sixteen roots of the transcendental equation in the
order of increasing positive real part and the corresponding values of % are
evaluated and are given in Table 2.

Let i = u/n. To get the value of % at a = 60°, the differential equation

dip ——ﬁcosa-{-g-sina

da acosmh + sina

was soived with the initial condition fi(w/12) given by the values .at a =
15° given above. We used the fourth order Runge-Kutta method given in
the MATLAB package using a tolerance of le — 10. The values of /7 at
a = 60°,175%,225° and 355° obtained by‘ the forward integration method'
are listed in Table 3. The real roots that were not generated by the forwafd

integration are listed in Table 4.
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TABLE 2: Values of A and p/m at o = 15° for the Clamped case

A w/mw

16.099036079369 + 8.549629866614¢ | 1.341586339947 + 0.712469155551 1

40.922739395410 + 11.808479416584 1 | 3.410228282951 + 0.984039951382 4

65.217933871100 + 13.519976459038% | 5.434827822592 + 1.126664704920

89.376965549419 + 14.695568014823% | 7.448080462452 + 1.224630667902¢
113.478110132424 + 15.592891970920% | 9.456509177702 + 1.299407664243 ¢
137.548757675389 + 16.3189807073147 | 11.462396472949 + 1.359915058943
161.601199318519 + 16.928883919527¢ | 13.466766609877 + 1.410740326627 i
185.641832424667 + 17.454722092831 7 | 15.470152702056 + 1.454560174403
209.674337397439 + 17.916891466163 4 | 17.472861449787 + 1.493074288847 ¢
233.700991180886 + 18.3291591789174 | 19.475082598407 + 1.527429931576 i
257.723282631706 + 18.7012584444354 | 21.476940219309 + 1.558438203703 1
281.742228750921 + 19.0403257172664 | 23.478519062577 + 1.586693809772 1
305.758549248677 + 19.3517496569394 | 25.479879104056 + 1.612645804745 1
329.772768581551 + 19.6396991292804 | 27.481064048463 + 1.636641594107 1
353.785278459033 + 19.9074657121424 | 29.482106538253 + 1.658955476012 ¢
377.796377663910 + 20.157693813903 7 | 31.483031471993 + 1.679807817825 ¢

" The values of i in Table 3 were verified by solving the transcendental
equation sin Aa + Asina = 0 for « = 60° and the resulting match was at
least to the tenth decimal place.

Ezample 2: For the clamped-free case, with v = 0.3, the transcendental
equation is
2.31sin® Aa = 4 — 0.092? sin? a.
The values of A and u/7 for o = 15° are listed in Table 5. The differential
equation
di _ 0.4971'(%)2 [~asin2a + 2 sinfa] ¢
da 9 31asin2nj + 0.98(L) sin2 a

was solved with the initial condition fi(w/12) and the resulting values of z for

a = 60° and a = 160° are tabulated in Table 6. Table 7 lists the additional
roots that were missed by the forward integration procedure. There was also
a spurious value of i = 1.550263 + 0.000000i generated at o = 160° that

does not correspond to a root of the relevant transcendental equation.
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TABLE 5: Values of X and u/m at o = 15° for the Clamped-Free case

A u/m

10.651024802745 + 0.0000000000007 | 0.887585400229 + 0.000000000000 ¢
7.610592426966 + 1.501062004362¢ | 0.634216035580 + 0.125088500364 1
22.784846703345 + 6.3422394952304 | 1.898737225279 + 0.528519957936 1
35.073902145999 + 8.0931944261434 | 2.922825178833 + 0.674432868845 ¢
47.233021440439 + 9.2534484303434 | 3.936085120037 + 0.771120702529 1
59.338504245872 + 10.1315923146754 | 4.944875353823 + 0.844299359556 i
71.414977259846 + 10.8408466690307 | 5.951248104987 + 0.903403889086
83.473543259896 + 11.4367577899374 | 6.956128604991 + 0.953063149161 i
95.520120582280 + 11.951029480485i | 7.960010048523 + 0.995919123374 4
107.558209383922 + 12.403569139462i | 8.963184115327 + 1.033630761622 ¢
119.590034126021 + 12.8077354947231 | 9.965836177168 + 1.0673112912274
131.617085967549 + 13.172944819256 4 | 10.968090497296 + 1.097745401605 ¢
143.640406736456 + 13.506091735206 | 11.970033894705 + 1.125507644601 4
155.660748892999 + 13.812380105128% | 12.971729074417 + 1.151031675427 4
167.678670940916 + 14.095836412439i | 13.973222578401 + 1.1746530343704
179.694597021781 + 14.359641355224 1 | 14.974549751815 + 1.196636779602 ¢
191.708855583596 + 14.6063520142754 | 15.975737965210 + 1.217196001190 4

TABLE 6: Values of u/n for the Clamped-Free Case

a = 60° a = 160°
1.079931 + 0.000000 % 1.744045 (false root)
0.567564 + 0.190356 ¢ 0.501101 + 0.2459401

1.904356 + 0.457347 4
2.927638 + 0.611914 4
3.940002 + 0.7111321
4.948141 + 0.785436 1
5.954037 + 0.8451484
6.958558 + 0.895174 4
7.962160 + 0.9382711
8.965111 + 0.9761494
9.967581 + 1.009949
10.969685 + 1.040473
11.971501 + 1.068304 %
12.973088 + 1.093882 1
13.974487 + 1.117546
14.975733 + 1.139565 4
15.976849 + 1.160153 ¢

2.505965 + 0.216165
3.509140 + 0.178136;
4.513539 + 0.096257 i
5.363897 + 0.0000004
6.251376 + 0.000000 i
7.121553 + 0.000000
7.978357 + 0.159757 4
8.980855 + 0.257304 i
9.982578 + 0.320489 4

10.983871 + 0.369089

11.984896 + 0.409186 i

12.985740 + 0.443597

13.986454 + 0.473889 4

14.987071 + 0.501033 i

15.987613 + 0.525682 4
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TABLE 7: Additional values of u/7: Clamped-Free case

a = 60°

a = 160°

5.677769 + 0.000000 %
6.826798 + 0.000000 4
1.503389 + 0.236691 i

Ezample 3: For the simply supported-free case, with v = 0.3, the transcen-

dental equation is

3.3sin2Xa = —0.7A sin 20

The values of A and p/7 for o = 15° are listed in Table 8.

TABLE 8: Values of A and u/7 at a = 15° for the SS-Free case

A

p/m

7.895591872816 + 0.000000000000 <
9.307012034278 + 0.000000000000 i
20.718871978887 + 2.743152513018
32.777489190922 + 3.676260674920 %
44.813676592684 + 4.288658065852 i
56.838604582663 + 4.748467761566
68.856982193617 + 5.117556866893 i
80.871175036583 + 5.426171354656 ¢
92.882514190978 + 5.691485721814 i
104.891811137801 + 5.924226510378 4
116.899591164329 + 6.131555242723 4
128.906210549635 + 6.318496510883 4
140.911920160849 + 6.488713926984
152.916902153721 + 6.6449622691704
164.921292234989 + 6.789365833965 i
176.925193736710 + 6.923597589457
188.928686829963 + 7.048998802756 i
200.931834739295 + 7.166661433097 i
212.934688043977 + 7.277486401963 1
224.937287723129 + 7.382225757249 1

0.657965989401 + 0.000000000000 4
0.775584336190 + 0.000000000000 1
1.726572664907 + 0.228596042752 ¢
2.731457432577 4 0.306355056243
3.734473049390 + 0.357388172154 4
4.736550381889 + 0.395705646797
5.738081849468 + 0.426463072241
6.739264586382 + 0.452180946221
7.740209515915 + 0.47429047681814
8.740984261483 + 0.493685542532 1
9.741632597027 + 0.510962936894 i
10.742184212470 + 0.526541375907
11.742660013404 + 0.540726160582
12.743075179477 + 0.553746855764
13.743441019582 + 0.565780486164 i
14.743766144726 + 0.576966465783 ¢
15.744057235830 + 0.587416566896
16.744319561608 + 0.597221786091 4
17.744557336998 + 0.606457200164 1
18.744773976927 + 0.615185479771 i




Sec. 5: Examples

TABLE 9: Values of u/n for the SS-Free Case

a = 60° a = 160°
0.548912 + 0.000000 i 0.488073 + 0.000000 %
0.915801 + 0.000000 ¢ 1.025131 + 0.000000 %

1.780755 + 0.000000 4
2.738015 + 0.155043 4
3.739534 + 0.215478 i
4.740664 + 0.257281
5.741543 + 0.289754 i
6.742251 + 0.316452
7.742834 + 0.339177 i
8.743324 + 0.358984 i
9.743743 + 0.376552
10.744106 + 0.392343 4
11.744424 + 0.406688
12.744705 + 0.419833 4
13.744956 + 0.4319654
14.745181 + 0.4432294
15.745384 + 0.453746 4
16.745569 + 0.463602
17.745738 + 0.4728824
18.745892 + 0.4816474

2.050935 + 0.000000 %
3.078267 + 0.0000004
4.108517 + 0.000000 ¢
5.144743 + 0.000000:
6.199987 + 0.000000 %
7.246253 +- 0.074584 1
8.246425 + 0.113503 1
9.246579 4 0.140984 ¢
10.246719 + 0.163023 4
11.246845 + 0.181689 i
12.246961 + 0.197998 1
13.247067 + 0.2125414
14.247165 + 0.225700 4
15.247255 + 0.237739 4
16.247339 + 0.248847 i |
17.247417 + 0.2591684
18.247490 + 0.2688121
19.247558 + 0.2778694

TABLE 10: Additional values of u/7: SS-Free case

o == 60°

a = 160°

5.072741 + 0.0000004

1.463953 + 0.000000 i
2.050935 + 0.000000 %
3.412327 + 0.0000004
4.382660 + 0.000000
6.292132 + 0.000000 7

’

The differential equation

dip 0.7(%) [sin 2a — 20 cos 2a]
de  6.6acos2rji + 0.7sin 2a

was solved with the initial condition fi(7/12) and the resulting values of 4 for
a = 60° and o = 160° are tabulated in Table 9. Table 10 lists the additional

roots that were missed by the forward integration procedure.




16 Roots of Transcendental Equations

6. CONCLUSIONS

The roots of the transcendental equations can be found for any arbitrary
angular region by solving the associated initial value problem. This proce-
dure is less time consuming since the alternate method of solving the original
transcendental equation requires a search procedure in the neighborhood of

the roots.
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